"A mesure que le soleil monte, l’Arabie d’en face se précise, sort de ses voiles du matin ; ses nuances s’avivent et s’échauffent, pour en arriver progressivement au grand incendie qui sera la fantasmagorie du soir.
Maintenant, nous marchons sur des coquilles, des coquilles comme jamais nous n’en avions vu. Pendant des kilomètres, ce sont de grands bénitiers d’église, rangés par zones ou entassés au gré du flot rouleur ; ensuite, d’énormes strombes leur succèdent, des strombes qui ressemblent à des mains ouvertes, d’un rose de porcelaine ; puis viennent des jonchées ou des morceaux de turritelles géantes, et la plage, alors toute de nacre blanche, miroite magnifiquement sous le soleil. Prodigieux amas de vies silencieuses et lentes, qui ont été rejetées là après avoir travaillé des siècles à sécréter l’inutilité de ces formes et de ces couleurs.
Je me rappelle que, dans mes songes de petit enfant, à une époque transitoire où j’étais passionné d’histoire naturelle, je voyais parfois des plages exotiques semées d’étonnantes coquilles ; il n’y avait qu’à se baisser pour ramasser les espèces les plus belles et les plus rares...mais cette profusion dépasse tout ce qu’imaginait mon esprit d’alors.
En souvenir sans doute de ces rêves d’autrefois ou bien par enfantillage encore, il m’arrive de faire agenouiller mon dromadaire et de descendre pour regarder ces coquilles. En plus des trois espèces que j’ai nommées et qui couvrent les plages de leur débris, on trouve aussi les cônes, les porcelaines, les rochers, les harpes, toutes les variétés les plus délicatement peintes ou les plus bizarrement contournées, la plupart servant de logis à des Bernard-l’ermite et courant à toutes petites jambes quand on veut les toucher. Et çà et là, de gros blocs de corail font des taches rouges parmi ces étalages multicolores ou nacrés." Pierre Loti, Le désert (1894)
Sommaire ** L’ornementation des coquilles ** L’ornementation des coquilles fossiles ** Modélisation mathématique en 2D,3D et reproduction en 3D ** Le garçon et les coquillages ** Bibliographie
L’ornementation des coquilles
Les coquilles de nombreux gastéropodes marins, principalement ceux vivant dans les régions tropicales, arborent des motifs colorés d’une grande beauté esthétique. Sans même aborder l’extrême variété des motifs en reliefs tels que les épines, les voiles, les côtes, les bourrelets…
Cette remarquable diversité de motifs géométriques sur les coquilles des mollusques, combinée à une régularité surprenante au sein de chaque espèce, bien que présentant parfois un certain polymorphisme intra-espèce (voir ci-dessous), a longtemps éveillé la curiosité et l’intérêt des scientifiques.
Photo de gauche : Lioconcha castrensis (Linnaeus, 1758) Variations intra-espèce « Lioconcha castrensis species group » Sancia E.T. Van des Meij et al – Researchgate juin 2014
Photo de droite : « Variations du motif coloré terrebellum terebellum. Les coquillages de l’Éocène du Bassin parisien » D.Merle et al – Fossiles, Revue française de paléontologie, hors série n° 3.
Alan Turing, mathématicien anglais, (1912-1954) a été le pionnier dans la description du processus chimique, connu sous le nom de système de réaction-diffusion, qui régit la pigmentation du derme (périostriacum) des coquillages. Ce processus implique le dépôt de molécules chimiques par les cellules du manteau, lors de l’expansion de la coquille d’un mollusque, conduisant ainsi à l’apparition de pigments à la surface du périostriacum.
Alan Turing a élaboré sa théorie sur le système de réaction-diffusion ou activation-inhibition. Selon cette théorie, les molécules chimiques régulent la production d’un diffuseur et d’un activateur de motif, ainsi que la production d’un inhibiteur qui entrave la production de l’activateur. Ces deux substances interagissent et influencent mutuellement leur production. La « diffusion » naturelle entraîne un motif homogène, sauf lorsque cette diffusion est contrariée par la « réaction » produisant ainsi un motif discontinu. Ce phénomène, connu sous le nom d’ «instabilité de Turing », explique la formation de motifs homogènes ou hétérogènes en fonction des concentrations de ces éléments dans l’espace et dans le temps.
Alan Turing a avancé que ce système de réaction-diffusion était également responsable de la diversité des motifs observés sur les ailes des papillons, le pelage des mammifères, les pétales de fleurs, ainsi que le motif d’écailles sur une pomme de pin…
Extrait de l'article Wikipedia sur Alan Turing : The Chemical Basis of Morphogenesis (Les Fondements chimiques de la morphogénèse) est un article écrit par Alan Turing en 1952 qui propose un modèle quant au processus naturel d'apparition de non-uniformité au sein d'un milieu de distribution spatiale uniforme et homogène à l'état initial. Sa théorie, que l'on peut voir comme une théorie de la morphogénèse par réaction-diffusion, a servi de modèle de base en biologie théorique et est considérée par certains comme un tout premier pas dans la théorie du chaos. Ce modèle est expliqué au niveau moléculaire pour expliquer la formation de « structures de réaction-diffusion » appelées « structures de Turing » qui consiste principalement en une variation spatiale des concentrations des espèces chimiques (que Turing appelle « morphogènes ») produisant des motifs en bandes ou en taches régulièrement espacées. Il implique deux molécules qui agissent en conjonction dans certaines réactions chimiques : la première agit comme activateur, initiant un processus d'émergence dans l'espace d'un motif particulier et s'auto-amplifiant par rétroaction positive mais stimulant aussi une deuxième molécule agissant comme un inhibiteur et se diffusant plus rapidement, plus loin dans l'espace".
« Indépendamment de la recherche des composants chimiques eux-mêmes, des chercheurs ont proposé, pour la génération des motifs colorés, des modèles physico-chimiques fondés sur des mécanismes de réaction-diffusion. Ces auto-organisations macroscopiques résultent de l’association entre réaction chimique et la simple diffusion moléculaire de ces espèces. Ainsi naissent des ondes propagatrices d’activité chimique, prenant des formes variées (ex. : bandes parallèles, réseaux hexagonaux…). Des simulations assistées par ordinateur montrent que ces modèles reproduisent finement les détails des motifs de coquilles actuelles. Différents types de motifs ont pu ainsi être reproduits avec une grande précision ». Didier Merle and al « Les motifs colorés résiduels des coquilles lutétiennes du bassin de Paris » (2008)
Cette théorie des mécanismes chimiques de type réaction-diffusion, à l’origine de l’ornementation des coquilles a été approfondie par Hans Meinhardt (1938 – 2016), Martin Klinger dans « A model of pattern formation on the shells of molluscs » (1987) et dans un second ouvrage « The Algorithmic Beauty of Sea Shells » (1996).
Hans Meinhardt a identifié des modèles génériques de pigmentation des coquilles :
- Bandes parallèles au bord d’accroissement
- Rangées de motifs
- Bandes parallèles à la direction de croissance
- Lignes obliques
- Lignes obliques avec des ramifications
- Croisement asymétrique
- Motif en chapiteau….
Figure 1 : crédit Hans Meinhardt et, Martin Klinger « A model of pattern formation on the shells of molluscs » Ed. Springer (1987)
Un autre aspect fascinant des systèmes de réaction-diffusion réside dans leur capacité à être étudiés et analysés mathématiquement à l’aide d’outils d’analyse. Les phénomènes de diffusion et de réaction peuvent en effet être modélisés au moyen d’équations mathématiques. Cette approche offre la possibilité de reproduire les motifs observés sur les coquillages à travers des modèles mathématiques.
L’ornementation des coquilles fossiles
"Les motifs résiduels (des coquilles fossiles) sont généralement peu apparents ou invisibles en lumière naturelle, mais peuvent être révélés ou rehaussés grâce à une exposition sous la lumière UV. Un bain préliminaire dans une solution d'hypochlorite de sodium (Eau de Javel) augmente beaucoup les chances d'observation des motifs pendant l'exposition sous la lumière UV. Les investigations· faites par notre équipe au Muséum montrent en premier lieu qu'en utilisant cette technique des motifs colorés résiduels ont été trouvés dans tous les étages du Cénozoïque". MERLE (D.) "Stratotype Lutétien".
Les principaux types motifs d’ornementation des coquilles mis en évidence par Hans Meinhardt et Martin Klinger (voir figure 1 ci-dessus) ont été reconnus chez les fossiles lutétiens examinés par l’équipe de Didier Merle (MNHN) :
- Bandes parallèles au bord d’accroissement (ex. : bandes axiales du gastéropode Tectus mitratus (Deshayes, 1832) et bandes concentriques du bivalve Costacallista laevigata(Lamarck, 1806)).
- Bandes continues, parallèles à la direction de croissance (ex. : bandes spirales du gastéropode Athleta (Volutospina) spinosus (Linné, 1758) et bandes radiales de Costacallista laevigata (Lamarck, 1806)).
- Bandes de tâches parallèles à la direction de croissance (ex. : bandes du gastéropodes Cryptoconus lineolatus (Lamarck, 1804)).
- Lignes obliques ondulantes du gastéropode Mitreola raricosta (Lamarck, 1816).
- Triangles sur fond pigmenté (ex. : triangles de la troisième bande spirale du gastéropodeMitreola maxwelli Le Renard, 1994).
Modélisation mathématique en 2D, 3D
Grâce aux avancées réalisées dans le domaine de la modélisation mathématique, notamment les travaux de Henry Moseley, D’Arcy Thompson (voir la spirale chez les mollusques) Alan Turing et Hans Meinhardt, il est désormais possible de modéliser sur ordinateurs en deux et trois dimensions la géométrie et les motifs de nombreuses coquilles de mollusques. Ces modèles intègrent des équations mathématiques complexes qui prennent en compte la forme de la coquille, les paramètres de la courbe génératrice spécifique à chaque espèce de mollusque (divers angles caractéristiques, vitesse de croissance…), ainsi que les mécanismes chimiques à l’origine de l’ornementation des coquilles.
Les progrès technologiques, tels que les imprimantes 3D, permettent même de créer des répliques tridimensionnelles fidèles des coquilles de mollusques, reproduisant à la fois leur forme et leur motif coloré.
Bien que les mécanismes chimiques intervenant dans la pigmentation des coquilles ne soient pas encore entièrement compris, certaines des formes et motifs d’ornementation de coquilles obtenus grâce à ces modélisations mathématiques sont si fidèles à la réalité que les théories énoncées par Henry Moseley, D’Arcy Thompson, Alan Turing et Hans Meinhardt semblent être valides, offrant ainsi de nouvelles perspectives passionnantes dans le domaine de la biologie évolutive.
Modélisation sur ordinateur en 2D
Modélisation sur ordinateur en 3D
Reproduction en 3D
À l’heure actuelle, de nouveaux outils tels les imprimantes 3D permettent à des chercheurs, comme Francesco de Comité de l’Université de Lille, de créer des répliques tridimensionnelles de mollusques, reproduisant à la fois leur forme et leurs motifs colorés :
Et pour finir un joli conte africain "Le garçon et les coquillages" extrait de www.iletaitunehistoire.com
Bibliographie
Henry Moseley » On the Geometrical Forms of Turbinated and Discoid Shells » (1838)
Tracy Thompson « On Growth and Form » (Forme et croissance) (1917).
Alan Turing « The chemical basis of morphogenesis » (1952)
Hans Meinhardt, Martin Klinger « A model of pattern formation on the shells of molluscs » (1987)
Hans Meinhardt « The Algorithmic Beauty of Sea Shells » (1996)
Francesco de Comité « 3D Modelling Seashells » « Modelling Seashells Shapes and Pigmentation Patterns : Experiments with 3D Printing » (2017)
Benjamin Marie « Evolution des biominéralisations nacrées chez les mollusques » (2008)
Pascal Chossat — « Les mathématiques de la morphogénèse (I et II) » — Images des Mathématiques, CNRS, 2012
Paul Valéry « L’homme et la coquille » (1944)
JH Fabre « Souvenirs entomologiques » La Géométrie de l’insecte livre VIII § XVIII (1900)
http://rouxjeanbernard.ch/AM/html/amch65.html
Jean Paul Delahaye « L‘algorithme des coquillages » (Pour la Science mars 2018)
Derek E. Moulton, Alain Goriely et Régis Chirat « Comment les coquillages acquièrent leur forme » (Pour la Science, n°491 29 août 2018) D
Futura-sciences.com « La coquille des mollusques, mémoire de l’environnement »
Didier Merle and al « Les motifs colorés résiduels des coquilles lutétiennes du bassin de Paris » (2008)
Christiane Rousseau « Nautile, nombre d’or et spirale dorée » (2008)
André Stoll « Les spirales » (2020)
Jean-Bernard Roux « Récréations informatique et mathématiques, la coquille des mollusques » http://rouxjeanbernard.ch/AM/html/amch65.html
Robert Ferréol https://mathcurve.com/courbes2d/logarithmic/logarithmic.shtml
Didier Merle and al « Les motifs colorés résiduels des coquilles lutétiennes du bassin de Paris » (2008)
Christiane Rousseau « Nautile, nombre d’or et spirale dorée » (2008)
André Stoll « Les spirales » (2020)
Jean-Bernard Roux « Récréations informatique et mathématiques, la coquille des mollusques » http://rouxjeanbernard.ch/AM/html/amch65.html
Robert Ferréol https://mathcurve.com/courbes2d/logarithmic/logarithmic.shtml
Institut des sciences mathématiques, Université du Québec à Montréal https://accromath.uqam.ca/